Category Archives: Almost scientific stuff

Les smart services: smart aussi pour l’environnement ?

Si les “smart services” offrent de nouvelles opportunités pour une gestion plus efficace des flux de matière et d’énergie, ils sont eux-mêmes loin d’être sans effet sur l’environnement. Quel est donc leur bilan écologique ?

Le développement d’une électronique toujours plus miniaturisée, autonome et bon marché a permis l’émergence de « smart services » s’appuyant sur des réseaux capteurs permettant de générer, distribuer et traiter automatiquement de l’information. Ce que ces services ont de « smart » est que cette information peut être utilisée à des fins d’optimisation : obtenir plus d’information sur un système, c’est une occasion de mieux le gérer. Qui dit meilleure gestion, peut aussi dire réduction de l’empreinte écologique du système ainsi géré. Ces technologies permettent déjà par exemple de réduire significativement l’impact de la collecte des déchets ménagers en ville. C’est pourquoi l’on considère généralement ces technologies comme une chance pour le développement durable, un enjeu majeur pour les collectivités locales.

Des processus plus intelligents, mais à quel prix ?

Cette optimisation se fait au prix du d’un déploiement à grande échelle de petits équipements électroniques qui n’est pas sans poser problème. Le déploiement d’un smart service peut nécessiter le déploiement de milliers de capteurs, certains commentateurs n’hésitent pas à parler de millions de capteurs dans le cadre de certaines applications spécifiques.

Or, la toxicité et le volume des déchets d’équipements électriques et électroniques (DEEE) sont depuis longtemps un sujet de préoccupation publique. Notamment parce que ces déchets se retrouvent bien souvent exportés dans des pays émergeants où ils sont artisanalement recyclés « par des chiffonniers des temps modernes » au péril de leur santé et de leur environnement. Si toutefois les capteurs sont effectivement récupérés sur le terrain une fois leur service accompli. Car la logique d’installation de ces réseaux sous la bannière « deploy and forget » ne laisse que peu de place à une logique de collecte en fin de vie.

Mais les DEEE ne sont que l’un des aspects de l’empreinte environnementale des TIC. La fabrication de semi-conducteurs nécessite des hauts niveaux d’organisation de la matière parmi les plus hautes atteintes par l’Homme. Et, suivant les lois de la thermodynamique, toute création d’ordre se paie par la création d’un désordre plus grand par ailleurs. En d’autres termes, plus les matériaux manipulés sont purs et techniques, plus il a fallu remuer de terre pour extraire les matières premières nécessaires à leur fabrication. De fait, la fabrication de semi-conducteurs est très intense en énergie et matériaux. Par exemple, pour fabriquer une puce de 2 grammes, plus de 1,7 kg de matières premières sont requis. En d’autres termes : seulement un dixième de pourcent de la matière mobilisée pour la fabrication d’une puce se retrouve au final dans cette puce. Le reste, c’est du déchet.

L’aspect « dématerialisé » des TIC cache un découplage entre leurs impacts effectifs et les impacts perçus à leur utilisation. Quel est alors le bilan environnemental de ces technologies « intelligentes » ? Les études ayant jusqu’à présent abordé cette question présentent des conclusions contrastées. Seul consensus existant : ces technologies ne doivent pas être considérées comme « écologiques » a priori. Il semble au contraire que ces technologies semblent naturellement amener à des transferts d’impacts, à un déplacement du problème. D’un côté certains aspects environnementaux du système que l’on veut optimiser s’en trouvent améliorés (par exemple leur consommation énergétique). D’un autre côté, d’autres aspects s’en trouvent dégradés (comme la production de DEEE par exemple).

Trois pistes pour réduire l’empreinte du “smart”

Ces transferts d’impacts ne sont cependant pas une fatalité : une démarche d’éco-conception peut aider à réduire, ou même éviter ces transferts. Eco-concevoir, cela implique en premier lieu de mesurer les impacts d’une solution technologique grâce à une Analyse de Cycle de Vie, seule méthode permettant de dresser un bilan environnemental global d’un système. Ceci implique également de définir des solutions alternatives visant à réduire ces impacts. Trois niveaux de d’action complémentaires permettent d’atteindre cet objectif. Premier niveau : éco-concevoir les capteurs. Par exemple : gérer les capteurs en flux bouclés (réutilisation, remanufacturing), et les concevoir avec une efficience et une autonomie énergétique maximale. Deuxième niveau : éco-concevoir l’infrastructure de capteurs, en choisissant l’agencement des capteurs répondant au juste besoin, permettant ainsi d’utiliser le moins d’équipements possible. Troisième niveau enfin : éco-concevoir l’information. Définir quelle est l’information juste nécessaire permettant à la fois d’optimiser au maximum le système visé et de solliciter au minimum l’infrastructure.

Conclusion : si les avantages environnementaux des « smart environnements » sont réels, ces technologies ne constituent pas pour autant le saint graal du salut environnemental. A contrario, seule une comparaison au cas par cas de leurs avantages et inconvénients ainsi qu’une démarche rigoureuse d’écoconception est à-même de garantir que ces technologies n’apportent pas qu’un simple déplacement du problème qu’elles tentent de résoudre.

Pour en savoir plus :

  • Bonvoisin J., 2012. Analyse environnementale et éco-conception de services informationnels. Ph.D. Thesis. Université de Grenoble.
  • Bonvoisin J., A. Lelah, F. Mathieux, D. Brissaud. 2014. An integrated method for environmental assessment and ecodesign of ICT-based optimization services. Journal of Cleaner Production, 68:144-154.

14 principles of design for DIY production

In contrast with the industrial organisation of production, DIY production settings imply a voluntary limitation in access to means of production, including manpower, tools, skills and investment capacity. These limitations imply in turn limitations in terms of achievable product size, complexity and accuracy.

In order to be suitable for DIY production, products designs have to integrate those limitations. Here are 14 design principles that can help:

  1. Use modular design. Modularity, i.e. the distribution of sub-functions of the product among distinct functional carriers with clearly defined interfaces, can help achieving a clear separation of vitamins[1] and DIY parts. Example: De-couple energy source and usage, so that any type of source can be used (e.g. electric motor, hydraulic pressure) for generating a given movement.
  2. Opt for processes that can be performed with standard tools. The more widely available the required tools are, the more probable it is that it will be accessible to anyone. Example: bolting instead of welding.
  3. Use commonplace materials. The more widely available the required materials are, the more probable it is that they can be purchased by anyone. Example: wood plate in sizes available in hardware stores.
  4. Use discarded materials and materials that are to-hand. Designing a product made of discarded materials that can be commonly used in households may be a solution for facilitating purchase. It should be however considered that discarded materials may have lower accuracy and require pre-processing steps. Example: contactless bicycle dynamo made of hard disk drive magnets.
  5. Use general purpose and standard components. Standard components may be more easily available than exotic ones. Using them may therefore ease the purchasing process. Example: widely available standards nuts and bolts that can be found in hardware stores.
  6. Facilitate for tailoring. A motivation for making a product in a DIY setting is to get a tailored product. Flexibility can be built in the product design in order to ease the tailoring process. Example: parameterized bicycle frame design.
  7. Facilitate for flexible construction. Giving a scope for last-minute tweaking in case the design cannot exactly be realized as described in the product requirements would allow overcoming shortages in the production process. Example: high geometric and material tolerances, beams with a grid of equally separated attachment holes.
  8. Prefer reversible to permanent joining features. Using removable and adjustable joining features allows accommodating mistakes or correcting misalignments in the assembly. Examples: interlocking elements, nuts and bolts vs. welding.
  9. Reduce vitamin variation. When several vitamins are required, using the same vitamin each time could help reducing the purchase and storage effort. Examples: one type of bolt for the assembly of all parts of the product, one type of step motors for translating the plateau of a machine-tool in all three directions or space.
  10. Reduce raw material variation. Strive designing all DIY-components so they can be made out of the same material and using same processes. This would allow reducing the purchasing effort and the requirements for processing tools. Example: 3D design made of assembled laser-cut plywood.
  11. Use symmetries. Using symmetries is another way of reducing part variation, to use several times the same part and to profit from learning curve in the production. Example: the frame of a 3D printer that is symmetrical along the slider rail of the printing head (left-right axis) can be assembled using same joining features for both left and right sides.
  12. Offer scalability through “stackability”. Building a product of a large size/power may be more difficult than building numbers of small products that can be combined in order to reach the desired size/power. It reduces the risk and need of handling larger and heavy products. Example: A high luminous emittance can be reached by combining several LED.
  13. Ensure ease of handling and transportation. Bulky or fragile products may be difficult to handle and require specific handling or holding mechanisms. In those case, use built-in handling mechanisms or provide DIY handling tools. Example: wheels and contact points built in the frame of the product, DIY building jig.
  14. Offer different depths of DIY. Not everybody have the same skills, tools, and interest in building things. It may be interesting giving the maker the possibility to choose by itself, which of the parts he or she considers as a vitamin. Example: a product with parts that can be either 3D-printed or bought as a kit.

This content is a reworked excerpt of the following publication: Bonvoisin, J., J. K. Galla, S. Prendeville. 2017. Design Principles for Do-It-Yourself Production. Accepted for publication and presentation at the 4th International Conference on Sustainable Design and Manufacturing, Bologna, Italia, 26-28 April. (to be published). This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

CC-BY-SA


[1] We use the term ‘vitamin’ in analogy with the vocabulary used in biological science to refer parts which are not suitable for DIY production. How DIY a product can be produced depends on the suitability of its constituting parts for a given DIY production setting. In most of the cases, not all parts of a product are suitable for a DIY production. For example, it may be more relevant to produce nuts and bolts in a mass production setting than in a DIY one. Nuts and bolts are typically vitamints of a DIY product.

Where sustainable product design got stuck – a springboard for open source design?

Looking back in the past years of research on the topic of sustainable product design, one can say that the international research community and the industry succeeded in building specific competences required for reaching more sustainable manufacturing. There have been large research efforts for measuring the environmental impact of products and processes. Public institutions and industrial sectors also performed great achievements in setting up specific environmental management strategies such as product end-of-life take back and processing (a big thing in the 90’s, particularly concerning cars and electronic scrap), energy efficiency of energy using products (a big thing in the years 2000, especially due to the European directive on energy using products) and energy efficiency of manufacturing systems.

But these successful stories are not that much related to product design and good examples of successfully eco-designed (where “eco” refers to the environment) products are still scarce. Or at least: the current eco-design practices still fail reaching more than marginal environmental impact reductions where drastic reductions are required.

To give a simple picture of what I mean: as I first learned about eco-design almost ten years ago, I saw this beautiful simplistic figure [1]:

Levels of eco-innovation

Levels of eco-innovation

Basically, it says four things:

  • There are basically four levels of innovation: product improvement, product redesign, function innovation, system innovation.
  • The higher the level, the better it is for sustainability. Product improvement may help you saving 10% environmental impacts while system innovation may lead to drastic decoupling between the social value of a product and its environmental impacts.
  • It takes time and effort to come to the highest levels.
  • But there is hope: it seems that we can reach the higher level someday. At least this layer exists, it is on the figure!

Looking back in the elapsed time since I first saw this figure, I have the feeling we got stuck at the first level—that we got good at improving details but are still unable to reach significant innovations. And indeed, a systematic consideration of environmental aspects as a driver of industrial or engineering design hasn’t been reached yet. Some of our colleagues from said it in 2002 already [2], years before I even started making research in eco-design: „the problem nowadays is not the lack of methodological support in product design, rather that of choosing the most suitable method from the many methods now available“. So if we have a lot of methods helping us to consider the environment into design, why don’t we use them? Where is the trick?

The problem of getting the industry using these methods still keeps researchers busy today [3]. But I don’t have the feeling we are getting much closer with the time. The social structures in which products take place put too many constraints to design. Meeting high levels of eco-innovation means breaking with conventional business models, production and consumption patterns. Many people dealing with eco-design acknowledge this and may have hoped of a massive evolution of these constraints that did not happen. Businesses in companies did not changed that much and are still based on selling stuff, the GDP (i.e. the value of all stuff sold) is still the most used macroeconomic indicator and social status of individuals is still measured by the amount of stuff they have. Engineers did their jobs in developing practical approaches to develop eco-designed products that remain unused because the underlying organisational changes did not really happened, or happen too slowly.

At this point, there are two possibilities. Either keep going on struggling with the existing constraints and advocating in the desert. Or look for alternatives design concepts that tend to challenge these constraints. In my opinion, open source hardware [5] is one of these alternative ways of developing products that bears the potential of breaking the barriers applying to ecodesign. Because it tends to challenge the way goods are produced and consumed. Here are my hypotheses.

First, the concept of open source puts the emphasis on making, on “doing” instead of “having”. It is not about how much things you own, it is about what you make. That is, it promotes a vision of social status decoupled from consumption, what may lead to reduced consumption volumes. Moreover, the direct participation of the user in the design may lead to better fitting products and to the avoidance of over-engineering and of the corresponding useless environmental impacts.

Second, open source hardware is at the opposite of intentional planned obsolescence. Because it reclaims the independence of the citizen from technology, it tends to promote repairable product design and actual capability building in repairing products. Many open source hardware projects pay for example attention to modularity. Modularity is an enabler of maintainability, repairability, upgradability, reusability and recyclability, and in turn supports product longevity. The intensified emotional link between the product and the user (the “I made it by myself”-effect) may also contribute to longer service lives and therefore to reduced environmental impact per unit of service.

Third, open source hardware promotes the participation of the citizen not only in the design but also in the production, under the motto “design global, produce local” [6]. This may lead to locally bound value creation chains, use of local resources, shorter transportation loops, adaptation to the local ecosystems and even closed loop material cycles. Many open source hardware projects strive to design products using local material flows (motto “design with what you have”) or simple products that can be fabricated within conventional workshops.

These are of course only hypotheses. Who can say today if the possibility for everybody to design and produce his/her own products will contribute to frugal and utilitarian consumption or to overabundance of recreational gadgets? Who can say if the potential economies of scopes achieved by local production (produce less) won’t be overwhelmed by the lack of economies of scale (as personal production may be far less efficient than centralized industrial production). But I have the strong feeling that open source hardware is a good way to promote sustainable production and consumption offers a good workaround to the constraints applying to product design.

Here are some questions that can be addressed today and that may deliver partial answers:

  • What is local production and under which conditions is it better than mass production?
  • Given the unavoidable limitations in terms of skills, materials and machines, what quality range of product quality is accessible in local production?
  • How to support a sustainable local manufacturing, i.e. in designing product that are adapted to the locally available materials, machines and skills but also to the local needs?

This is a transcription of a talk I gave at the 3rd International conference on Sustainable Design and Manufacturing.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

CC-BY-SA


[1] Brezet, H. (1997). Dynamics in ecodesign practice. Industry and Environment, 20(1-2), 21-24. Reworkerd by İdil Gaziulusoy. https://systeminnovationforsustainability.com/about/

[2] Ernzer, M., and H. Birkhofer, eds. 2002. Selecting methods for life cycle design based on the needs of a company.

[3] Pigosso, Daniela C. A., Henrique Rozenfeld, and Tim C. McAloone. “Ecodesign Maturity Model: A Management Framework to Support Ecodesign Implementation into Manufacturing Companies.” Journal of Cleaner Production 59 (November 15, 2013): 160–73. doi:10.1016/j.jclepro.2013.06.040.

[5] A definition of the term “open source hardware” is available here. This concept can be alternatively termed as „open design“, following for example here.

[6] Kostakis, Vasilis, Vasilis Niaros, George Dafermos, and Michel Bauwens. “Design Global, Manufacture Local: Exploring the Contours of an Emerging Productive Model.” Futures 73 (October 2015): 126–35. doi:10.1016/j.futures.2015.09.001.